Solving a Problem With a Continuous Variables and One Binary
Abstract
We discuss a class of tightly feasible MILP for which branch-and-bound is ineffective. We consider its hardness, evaluate the probability that randomly generated instances are feasible, and introduce a heuristic solution method based on the old idea of reformulating binary variables to continuous while introducing a linear complementarity constraint. We show the extent of the computational advantage, under a time limit, of our heuristic with respect to a state-of-the-art branch-and-bound implementation.
Keywords
- Reformulation
 - Infeasible
 - Market split
 - Market share
 - Hard instances
 
This work was partially supported by: the PGMO grant "Projet 2016-1751H"; a Siebel Energy Institute Seed Grant; the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759 ETN "MINOA".
References
-                 
Aardal, K., Bixby, R.E., Hurkens, C.A.J., Lenstra, A.K., Smeltink, J.W.: Market split and basis reduction: towards a solution of the cornuéjols-dawande instances. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 1–16. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_1
 -                 
Aardal, K., Hurkens, C., Lenstra, A.: Solving a system of linear Diophantine equations with lower and upper bounds on the variables. Math. Oper. Res. 25(3), 427–442 (2000)
 -                 
Barvinok, A.I.: Feasibility testing for systems of real quadratic equations. Discrete Comput. Geom. 10(1), 1–13 (1993). https://doi.org/10.1007/BF02573959
 -                 
Bradley, G.: Algorithms for Hermite and Smith normal matrices and linear Diophantine equations. Math. Comput. 25(116), 897–907 (1971)
 -                 
Cornuéjols, G., Dawande, M.: A class of hard small 0—1 programs. In: Bixby, R.E., Boyd, E.A., RÃos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 284–293. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69346-7_22
 -                 
D'Ambrosio, C.: Personal communication (2017)
 -                 
Di Giacomo, L., Patrizi, G., Argento, E.: Linear complementarity as a general solution method to combinatorial problems. INFORMS J. Comput. 19(1), 73–79 (2007)
 -                 
Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
 -                 
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, New York (1979)
 -                 
Gill, P.: User's guide for SNOPT version 7.2. Systems Optimization Laboratory, Stanford University, California (2006)
 -                 
Hall, P.: The distribution of means for samples of size \(n\) drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable. Biometrika 19(3/4), 240–245 (1927)
 -                 
IBM: ILOG CPLEX 12.10 User's Manual. IBM (2020)
 -                 
Lazebnik, F.: On systems of linear Diophantine equations. Math. Mag. 69(4), 261–266 (1996)
 -                 
Ledoux, M.: The concentration of measure phenomenon. In: Number 89 in Mathematical Surveys and Monographs. AMS, Providence (2005)
 -                 
Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)
 -                 
Locatelli, M., Schoen, F.: Random linkage: a family of acceptance/rejection algorithms for global optimization. Math. Program. 85(2), 379–396 (1999)
 -                 
Lopez, C., Beasley, J.: A note on solving MINLP's using formulation space search. Optim. Lett. 8, 1167–1182 (2014)
 -                 
Murray, W., Ng, K.-M.: An algorithm for nonlinear optimization problems with binary variables. Comput. Optim. Appl. 47, 257–288 (2010)
 -                 
Pardalos, P., Rosen, J.: Global optimization approach to the linear complementarity problem. SIAM J. Sci. Stat. Comput. 9(2), 341–353 (1988)
 -                 
Raghavachari, M.: On connections between zero-one integer programming and concave programming under linear constraints. Oper. Res. 17(4), 680–684 (1969)
 -                 
Sahraoui, Y., Bendotti, P., D'Ambrosio, C.: Real-world hydro-power unit-commitment: dealing with numerical errors and feasibility issues. Energy 184, 91–104 (2019)
 -                 
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
 -                 
Taktak, R., D'Ambrosio, C.: An overview on mathematical programming approaches for the deterministic unit commitment problem in hydro valleys. Energy Syst. 8(1), 57–79 (2016). https://doi.org/10.1007/s12667-015-0189-x
 
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Liberti, L. (2021). Continuous Reformulation of Binary Variables, Revisited. In: Strekalovsky, A., Kochetov, Y., Gruzdeva, T., Orlov, A. (eds) Mathematical Optimization Theory and Operations Research: Recent Trends. MOTOR 2021. Communications in Computer and Information Science, vol 1476. Springer, Cham. https://doi.org/10.1007/978-3-030-86433-0_14
Download citation
- .RIS
 - .ENW
 - .BIB
 
-                   
DOI : https://doi.org/10.1007/978-3-030-86433-0_14
 -                   
Published:
 -                   
Publisher Name: Springer, Cham
 -                   
Print ISBN: 978-3-030-86432-3
 -                   
Online ISBN: 978-3-030-86433-0
 -                   
eBook Packages: Computer Science Computer Science (R0)
 
Source: https://link.springer.com/chapter/10.1007/978-3-030-86433-0_14
0 Response to "Solving a Problem With a Continuous Variables and One Binary"
Post a Comment